Long 5′ untranslated regions regulate the RNA stability of the deep-sea filamentous phage SW1

نویسندگان

  • Huahua Jian
  • Lei Xiong
  • Guanpeng Xu
  • Xiang Xiao
  • Fengping Wang
چکیده

Virus production in the deep-sea environment has been found to be high, and viruses have been suggested to play significant roles in the overall functioning of this ecosystem. Nevertheless, little is known about these viruses, including the mechanisms that control their production, which makes them one of the least understood biological entities on Earth. Previously, we isolated the filamentous phage SW1, whose virus production and gene transcription were found to be active at low temperatures, from a deep-sea bacterium, Shewanella piezotolerans WP3. In this study, the operon structure of phage SW1 is presented, which shows two operons with exceptionally long 5' and 3' untranslated regions (UTRs). In addition, the 5'UTR was confirmed to significantly influence the RNA stability of the SW1 transcripts. Our study revealed novel regulation of the operon and led us to propose a unique regulatory mechanism for Inoviruses. This type of RNA-based regulation may represent a mechanism for significant viral production in the cold deep biosphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Modulation of DNA Replication and Gene Transcription in Deep-Sea Filamentous Phage SW1 in Response to Changes of Host Growth and Temperature

Little is known about the response of deep-sea virus and their relationship with their host towards environmental change. Although viruses are thought to play key roles in the deep-sea ecological evolution and biogeochemical cycling, these roles are yet to be defined. This study aims to delineate the relationship between a deep-sea filamentous phage SW1 and its host Shewanella piezotolerans (S....

متن کامل

Role of filamentous phage SW1 in regulating the lateral flagella of Shewanella piezotolerans strain WP3 at low temperatures.

Low-temperature ecosystems represent the largest biosphere on Earth, and yet our understanding of the roles of bacteriophages in these systems is limited. Here, the influence of the cold-active filamentous phage SW1 on the phenotype and gene transcription of its host, Shewanella piezotolerans WP3 (WP3), was investigated by construction of a phage-free strain (WP3ΔSW1), which was compared with t...

متن کامل

A novel filamentous phage from the deep-sea bacterium Shewanella piezotolerans WP3 is induced at low temperature.

Active filamentous phage particles were isolated from the deep-sea bacterium Shewanella piezotolerans WP3. A putative single-stranded DNA binding protein of the phage was found to be overexpressed at 4 degrees C compared to its expression at 25 degrees C by two-dimensional polyacrylamide gel electrophoresis. Reverse transcription quantitative PCR further revealed that the key genes of the SW1 p...

متن کامل

Untranslated regions of a mobile transcript mediate RNA metabolism.

BEL1-like transcription factors are ubiquitous in plants and interact with KNOTTED1 types to regulate numerous developmental processes. In potato (Solanum tuberosum subsp. andigena), the BEL1-like transcription factor StBEL5 and its Knox protein partner regulate tuber formation by targeting genes that control growth. RNA detection methods and heterografting experiments demonstrated that StBEL5 ...

متن کامل

Isolation and Tissue Distribution of an Insulin-Like Androgenic Gland Hormone (IAG) of the Male Red Deep-Sea Crab, Chaceon quinquedens

The insulin-like androgenic gland hormone (IAG) found in decapod crustaceans is known to regulate sexual development in males. IAG is produced in the male-specific endocrine tissue, the androgenic gland (AG); however, IAG expression has been also observed in other tissues of decapod crustacean species including Callinectes sapidus and Scylla paramamosain. This study aimed to isolate the full-le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016